home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE ZHPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
- * .. Scalar Arguments ..
- COMPLEX*16 ALPHA, BETA
- INTEGER INCX, INCY, N
- CHARACTER*1 UPLO
- * .. Array Arguments ..
- COMPLEX*16 AP( * ), X( * ), Y( * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZHPMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian matrix, supplied in packed form.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the upper or lower
- * triangular part of the matrix A is supplied in the packed
- * array AP as follows:
- *
- * UPLO = 'U' or 'u' The upper triangular part of A is
- * supplied in AP.
- *
- * UPLO = 'L' or 'l' The lower triangular part of A is
- * supplied in AP.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - COMPLEX*16 .
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * AP - COMPLEX*16 array of DIMENSION at least
- * ( ( n*( n + 1 ) )/2 ).
- * Before entry with UPLO = 'U' or 'u', the array AP must
- * contain the upper triangular part of the hermitian matrix
- * packed sequentially, column by column, so that AP( 1 )
- * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
- * and a( 2, 2 ) respectively, and so on.
- * Before entry with UPLO = 'L' or 'l', the array AP must
- * contain the lower triangular part of the hermitian matrix
- * packed sequentially, column by column, so that AP( 1 )
- * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
- * and a( 3, 1 ) respectively, and so on.
- * Note that the imaginary parts of the diagonal elements need
- * not be set and are assumed to be zero.
- * Unchanged on exit.
- *
- * X - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element vector x.
- * Unchanged on exit.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- * BETA - COMPLEX*16 .
- * On entry, BETA specifies the scalar beta. When BETA is
- * supplied as zero then Y need not be set on input.
- * Unchanged on exit.
- *
- * Y - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCY ) ).
- * Before entry, the incremented array Y must contain the n
- * element vector y. On exit, Y is overwritten by the updated
- * vector y.
- *
- * INCY - INTEGER.
- * On entry, INCY specifies the increment for the elements of
- * Y. INCY must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * .. Local Scalars ..
- COMPLEX*16 TEMP1, TEMP2
- INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG, DBLE
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ) )THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 6
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 9
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'ZHPMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * Set up the start points in X and Y.
- *
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
- *
- * Start the operations. In this version the elements of the array AP
- * are accessed sequentially with one pass through AP.
- *
- * First form y := beta*y.
- *
- IF( BETA.NE.ONE )THEN
- IF( INCY.EQ.1 )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 10, I = 1, N
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20, I = 1, N
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO )THEN
- DO 30, I = 1, N
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40, I = 1, N
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
- KK = 1
- IF( LSAME( UPLO, 'U' ) )THEN
- *
- * Form y when AP contains the upper triangle.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 60, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- K = KK
- DO 50, I = 1, J - 1
- Y( I ) = Y( I ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( I )
- K = K + 1
- 50 CONTINUE
- Y( J ) = Y( J ) + TEMP1*DBLE( AP( KK + J - 1 ) )
- $ + ALPHA*TEMP2
- KK = KK + J
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70, K = KK, KK + J - 2
- Y( IY ) = Y( IY ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*DBLE( AP( KK + J - 1 ) )
- $ + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 80 CONTINUE
- END IF
- ELSE
- *
- * Form y when AP contains the lower triangle.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 100, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*DBLE( AP( KK ) )
- K = KK + 1
- DO 90, I = J + 1, N
- Y( I ) = Y( I ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( I )
- K = K + 1
- 90 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- KK = KK + ( N - J + 1 )
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*DBLE( AP( KK ) )
- IX = JX
- IY = JY
- DO 110, K = KK + 1, KK + N - J
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*AP( K )
- TEMP2 = TEMP2 + DCONJG( AP( K ) )*X( IX )
- 110 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + ( N - J + 1 )
- 120 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZHPMV .
- *
- END
-